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Abstract. We study the kinetics and the jamming state in the continuum deposition of
molecules which present transient mobility, i.e.hot molecules. The transient mobility is caused
by the inability to dissipate the energy gained by the particle after formation of the surface bond
instantaneously. Accordingly, the particle flies up to a distanceR before being immobile. We
analyse the continuum deposition ofhot monomers in one dimension. The rate equations for
the gap distribution functions are written and solved by means of numerical procedures and
the results are compared with Monte Carlo simulations. The kinetics of the process show a
crossover between power-law and exponential asymptotic regimes for increasing values ofR.
The jamming state presents a jamming densityρR(∞), which is strongly dependent on the
parameterR.

1. Introduction

Models of irreversible monolayer deposition (or adsorption) of particles on solid surfaces
have been investigated extensively [1–9]. In many experiments on the adhesion of colloidal
particles and proteins on solid substrates the relaxation time scales are much longer than the
times for the formation of the deposit. Well known examples of irreversible monolayer
deposition models are ‘random sequential adsorption’ (RSA) [1] and the ‘car parking
problem’ [1, 9]. In these models, rigid particles are placed at random, sequentially and
irreversibly onto solid smooth surfaces in such a way that the particles do not overlap. If an
incoming particle approaches part of the substrate which is already covered, it is rejected.
Eventually no more particles fit on the surface and the process stops in the so-calledjamming
(or saturation) limit. The quantity of interest is the fraction of total area,θ(t), covered in
time t by the depositing particles or objects. Due to the blocking of the area by the already
randomly adsorbed particles, the limiting or ‘jamming coverage’,θj(∞), is less than that
corresponding to close packing. The emergence of this jammed state is influenced by
infinite memory effects. Consequently, its formation cannot be described by mean-field
theory, except for very early times, whenθ ∝ t . The analysis of such models includes
theoretical studies and computer simulations. Experimental results, as for example the
adhesion of latex spheres on a silica surface [10], support the models as possible theoretical
tools to treat the irreversible adsorption. The analytical treatment includes exact solutions
[3, 9], which are mostly in one dimension, series expansion, shielding and truncation [1],
etc, while Monte Carlo simulations have been used extensively in the analysis of the RSA
problem [1].
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On the other hand, the analysis of the transient mobility on the irreversible deposition
is interesting. One possible mechanism which involves transient mobility is diffusional
relaxation. The molecules, after adsorption on surface sites, jump by thermal activation
to a more favourable energy location, i.e. stronger adsorption sites, where they remain
irreversibly adsorbed. The effect of diffusional relaxation on RSA processes has been
introduced and discussed by Privman and Nielaba [11] in the RSA of dimers in a one-
dimensional (1D) lattice, where as a main feature, full coverage is reached. The analysis is
also extended to 1Dk-mer deposition [12], adsorption of particles on a two-dimensional (2D)
square lattice [13] and dimer deposition on different fractal structures [14]. More recently,
the effect of diffusional relaxation was introduced by Mannet al [15] in the irreversible
deposition of small latex particles, to explain the inconsistency between the behaviour of
the radial distribution function and the variance of the density of adsorbed particles.

Another well studied relaxation mechanism is so-called ‘hot adsorption’. Experimen-
tally, scanning tunnelling microscopy (STM) observations [16] of the adsorption of O2 on
Al(111) have shown that, under certain conditions, oxygen molecules striking the metal
surface not only dissociate instantaneously upon adsorption, but dissipate part of their ex-
cess energy in degrees of freedom parallel to the surface. As a consequence, the resulting
monomers fly apart up to a distanceR before being immobily adsorbed. The experiment
has shown that at a temperatureT = 300 K, the travelling distanceR is, on average, ap-
proximately 40Å for each monomer. ‘Hot’ adsorption has also been observed by Weiss and
Eigler [17]. They have reported that Xe atoms travel several hundreds of angstroms across
the Pd(111) surface, kept at 4 K, before adsorption. We can conclude that the inability to
dissipate the energy gained by a particle after formation of the surface bond instantaneously
results in transient mobility relaxation.

This interesting process has been described in the framework of the random sequential
adsorption model. Monte Carlo simulations have been performed to analyse 1D and 2D hot
dimer adsorption [18, 19]; the results show that both the kinetics and the saturation state
are strongly dependent onR. On the other hand, an analytical treatment of this process has
only been performed in one dimension [20, 21]. Numerical simulation has shown that the
hot dimer mechanism considerably enhances the rate of CO2 production in the catalysed
oxidation of carbon monoxide [22]. The influence of such an adsorption mechanism has
also been used to analyse the critical behaviour in the monomer–dimer irreversible phase
transition [23]. The authors have found that the critical threshold of the second-order
irreversible phase transition (IPT) and also the location of the first order IPT depend on
R. However, the evaluated critical exponents indicate that the universality class of the
transition remains unchanged.

The analysis of ‘hot’ relaxation is also extended to continuum deposition. Recently, ‘hot’
dimer adsorption in the continuum has been analysed by means of numerical simulations
and analytical approaches for finite flight distanceR [24]. The jamming state, as in the
discrete state, depends on the parameterR; however, one of the most interesting features
which differentiates the continuum deposition from RSA of the hot dimer in the lattice is the
piecewise profile which characterizes the jamming density as a function of the flight distance
R. The structure observed in the profile presents finite discontinuities in the neighbourhood
of the integer values ofR, which is explained by the fact that the probability to cover the
gaps of length 2R is extrictly zero, and the number of gaps of sizenR (with n integer) are
relatively high.

Based on the results observed in the hot dimer continuum deposition, we are interested
in extending the study of the ‘hot’ relaxation mechanism to the continuum deposition of
molecules (monomers) in one dimension.
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The paper is organized as follows. First, we describe in section 2 the model of monomer
adsorption in one dimension, in particular we develop and solve the kinetics rate equations
for R < σ ; the generalization of the treatment to any values ofR is given in the appendix.
The simulation scheme is also presented in this section. The results for both the kinetics
and the jamming state are given and discussed in section 3. Finally, in section 4 we present
our conclusions.

2. The model

Let our model consider the deposition of hot monomers in a one-dimensional infinite lattice.
The area covered by the monomer is taken to be equal toσ . The monomers arrive randomly
at the line at a ratew (per unit time per unit length). If an incoming monomer is blocked
by an adsorbed adparticle, it is removed; otherwise the deposition is successful. After
deposition in a free area, the monomers fly apart up to a certain distanceR (in terms of
σ units) as in the discrete version of the hot deposition process. If during the flight one
monomer hits another adparticle or a cluster of adparticles which are already at rest on the
surface, the flying monomer is frozen in the collision point (see figure 1). Note that the
concept of jumps has also been introduced in previous RSA studies. In fact, Pagonabarraga
et al [25] have considered a model where particles arrive at the line forming an angleα

with the normal; the authors argue that the fixed values forα are induced by the presence
of a driving external field. However, the similarity between both models is restricted to the
fact that, in both cases, particles move instantaneously from the original landing point to
the definitive deposition or adsorption place.

Figure 1. Illustration of the deposition process. (a) The incoming monomer A of size 1 arrives
at the line and its centre is deposited in (l − 1) possible places. The monomer B is blocked by
a previous adsorbed particle, therefore the adsorption process is aborted. (b) After deposition,
the monomer flies apart up to a distanceR from the deposition place (monomerA) before
being made immobile. If during the flight the particle hits another adparticle or cluster of
adparticles which are already at rest on the line, the flying monomer is frozen in the collision
point (monomer C) and the flying distance isR′ < R.
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The kinetics of the hot monomer adsorption process are monitored following the time
evolution ofḠR(l̄, t̄ ) dl̄, which represents the number density of gaps with length between
l̄ and l̄ + dl̄ at time t̄ , for a given value ofR. The number density of gaps per unit length
is given by

nR(t) =
∫ ∞

0
GR(l, t)dl (1)

where, for convenience, we have introduced the dimensionless variablest = σwt̄ , l = l̄/σ
andGR = σḠR. In the following, we considerσ = 1 without loosing generality.

The densityρR(t) is also related to the fraction of uncovered surface, i.e. the fraction
of the line uncovered by the adsorbed particles,

ρR(t) = 1−
∫ ∞

0
lGR(l, t)dl. (2)

Due to the nature of the deposition process, that is, one monomer can hit another
adparticle or cluster of adparticles leading to cluster formation, each gap does not correspond
necessarily to one particle, so we then haveρR(t) 6= nR(t).

According to the definition of the model, the kinetics of the process are given by the
time evolution ofGR(l, t). To illustrate the method, we present in the following subsection
the derivation of the rate equations and their solution for the caseR < 1. In the appendix,
we present the derivation of the caseR > 1.

2.1. Rate equations forR < 1

The rate equations for the gap distribution function (GDF) can be written in a closed form by
considering all the ways in which intervals may be created or destroyed during the process.
Let us now write the set of equations that describe the kinetics evolution of the GDF for
R < 1:

for R < 1< l

∂G0
R(l, t)

∂t
= −(l − 1)G0

R(l, t)+ RG0
R(l + 1, t)+

∫ l+R+1

l+1
G0
R(l
′, t)dl′

+2
∫ ∞
l+R+1

G0
R(l
′, t)dl′ (3)

for R < l < 1,

∂G1
R(l, t)

∂t
= RG0

R(l + 1, t)+
∫ l+R+1

l+1
G0
R(l
′, t)dl′ + 2

∫ ∞
l+R+1

G0
R(l
′, t)dl′ (4)

and finally, for 0< l < R,

∂G2
R(l, t)

∂t
= lG0

R(l + 1, t)+
∫ ∞
l+R+1

G0
R(l
′, t)dl′. (5)

In equation (5) the gaps can be created from those with lengthl′ = l + 1 by deposition
of one monomer in thel possible inner places. Creation of such gaps also takes place by
deposition of the centre of a monomer at distancel+R+1/2 from one extreme of a given
gap; in this case the minimum possible length for such gaps will bel′ = l + R + 1, and
the integration takes into account the contribution of those gaps with lengthl′ > l+R+ 1.
Note that gaps with length between 0< l < R cannot be destroyed becauseR < 1.

The analysis of the first terms in equation (4) is similar to the first terms of equation (5)
but the possible deposition locations for a given monomer areR instead ofl. The second
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term in equation (4) represents the increment in the number of gaps with length between
R < l < 1 by destruction of gaps with lengthsl+1< l′ < l+R+1. As is described above,
the event takes place by deposition of a given monomer whose centre falls at a distance of
l −R + 1/2 from one of the extremes of the gap. The next term is due to the contribution
of the gaps with lengthl′ > l + R + 1; the factor of two is due to the fact that the centre
of a given monomer can be deposited in two possible places located atl ± R + 1/2.

Finally, in equation (3) we describe the time evolution of the distribution function of
gap with lengthl > 1> R. The first term of equation (3) takes into account the destruction
of the gap by deposition of a given monomer in (l − 1) possible inner places. The second,
third and fourth terms in equation (3) are equivalent to those of (4).

To solve the set of integrodifferential equations, we have used a standard procedure
[1–3]. Let us consider equation (3), which describes the evolution of gaps with length
l > 1. Inserting the following ansatz,

G0
R(l, t) = H(t)t2 e−(l−1)t (6)

in equation (3) gives

dH(t)

dt
= H(t)

[
R e−t + 1

t
(e−t (e−Rt + 1)− 2)

]
(7)

the solution of which is

H(t) = eR(1−e−t ) exp

[ ∫ t

0
(e−(R+1)u + e−u − 2)

du

u

]
. (8)

Introducing the exponential-integral function

E1(t) =
∫ ∞
t

e−u
du

u

the functionH(t) can be rewritten as

H(t) = e−(2γ−R)

(R + 1)t2
e−[E1((R+1)t)+E1(t)+R e−t ] (9)

whereγ = 0.577 24. . . is the Euler constant. OnceG0
R(l, t) is known, equations (4) and

(5) can be easily solved to obtain the following expression forG1
R(l, t) andG2

R(l, t):

G1
R(l, t) =

∫ t

0
H(t ′)t ′ e−lt

′
(Rt ′ + e−Rt

′ + 1) dt ′ (10)

and

G2
R(l, t) =

∫ t

0
H(t ′)t ′ e−lt

′
(t ′l + e−Rt

′
) dt ′. (11)

In figure 2 we have shown the behaviour of the gap distribution functionsG0
R(l, t),

G1
R(l, t) andG2

R(l, t) as a function ofl, for fixed value ofR and with timet as a parameter.
The mean feature of thel dependence of the GDF is the finite discontinuity which appears
in l = R at any timet , which is due to the creation of gaps with lengthl < R taking place
by deposition of a given monomer, the centre of which falls at a distance ofl+1/2+R from
one of the extremes of the interval, while for the gaps with lengthR < l < 1 the possible
deposition places are located at a distancel + 1/2± R; therefore, in the neighbourhood of
l = R the number of gaps with lengthl > R is bigger than those with lengthl < R. At
the end of the process (t = ∞), another discontinuity appears atl = 1 because there are
no intervals larger than 1 (G0

R(l,∞) = 0 for l > 1). One important consequence of the
‘hot’ adsorption mechanism is that the gap distribution functionG2

R(l,∞) does not present
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Figure 2. The gap distribution function (GDF)GR(l, t) as a function ofl, with time t as
a parameter and for fixed values of the flying distanceR = 0.5. We can observe the finite
discontinuity atl = R for any value of time, and atl = 1 for t = ∞.

logarithmic divergence at contact due to the fact that the particles can hit each other. At the
limit R = 0 corresponding to classical RSA,G2

R(l,∞) = 0 by definition (see equation (11))
andG1

0(l,∞) ∝ − ln(l) for l→ 0 as we expect [26–28].
Is interesting to note that the last arguments are also valid forR > 1; however, in these

cases the first discontinuity will be located atl = R − int(R) (where the function int(R)
means the integer part ofR), that is, because gaps with lengthl < R are filled by particles
which hit one of the extremes of the interval, att = ∞ the length of the resulting gap will
be l = R − int(R).

From the gap distribution function, it is possible to obtain the densityρR(t) by using
equation (2) as

ρR(t) = 1−
∫ R

0
lG2

R(l, t)dl −
∫ 1

R

lG1
R(l, t)dl −

∫ ∞
1
lG0

R(l, t)dl. (12)

An alternative route which allows the analysis of the short-time and asymptotic
behaviour of the process is by using the kinetic equation satisfied by the densityρR(t),
which can be written as

dρR(t)

dt
= 8R(t) (13)

where8R(t), the probability of adding one more particle, is equal to the fraction of the
line available for particle deposition. Since, for a given gap of lengthl > 1, the available
length for inserting a new particle is equal to (l − 1), the function8R(t) is equal to

8R(t) =
∫ ∞

1
(l − 1)G0

R(l, t)dl. (14)

Inserting equation (6) in (14) and using equation (13) leads to the following expression for
the density:

ρR(t) =
∫ t

0
H(u) du = e−(2γ−R)

(R + 1)

∫ t

0
e−[E1((R+1)u)+E1(u)+R e−u] du

u2
(15)
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which is equivalent to equation (12). The jamming density,ρR(∞), can be calculated by
taking the limit for t →∞ in the latter equation, which thus gives

ρR(∞) = e−(2γ−R)

(R + 1)

∫ ∞
0

e−[E1((R+1)u)+E1(u)+R e−u] du

u2
. (16)

Now, we can easily evaluate the short-time behaviour which is given byρR(t) = t +O(t2),
while close to the jamming limitρR(t) approaches its saturation value following an algebraic
law, which gives

ρR(∞)− ρR(t) ≈ e−(2γ−R)

(R + 1)
t−1. (17)

The asymptotic behaviour ofρR(t) is thus similar to that of a conventional RSA. Note
also that, forR = 0, the functionH(t) in equation (9) as well as the density given by
equation (15) correspond to the well known car parking problem, where the jamming limit
(16) is ρR=0(∞) = 0.747 59 [1]. Note that the previous analysis is only valid for finite
values ofR.

2.2. Monte Carlo simulation

Here we consider briefly the simulation scheme for the deposition process. The procedure
is almost described in the definition of the model given above. We consider an off-lattice
model where the area covered by the monomer is taken to be equal to 1. The monomers
arrive randomly at the line of sizeL with periodic boundary conditions. Typical lattice
sizes used in our simulations are in the rangeL = 103–105 depending on the value of
the parameterR, which is in the rangeR = 0 to 5× 103. In our simulation experiments
no finite-size effect has been observed in the quantities of interest. The corresponding
deposition algorithm is as follows. (i) A real number between 0< η < L is selected at
random, the corresponding segmentη, η + 1 is considered. If the deposition place defined
by the segment is total or partially occupied the trial ends, i.e. the monomer deposition
cannot take place because the deposition area is blocked by an adsorbed adparticle. (ii) The
Monte Carlo (MC) timet is increased tot +1t . (iii) After monomer deposition we decide
at random, with equal probability, the flying direction. (iv) If during the flight the monomer
hits another adparticle or ensemble which is already at rest, the flying monomer is frozen
in at the collision point.

The MC time increment1t is defined as 1/L in such way that the MC unit time (t = 1),
on average, involvesL/1 trials. During the deposition process the following quantities are
measured: the densityρR(t) as a function of timet and the probability8R(t), calculated
as the ratio between the number of successful deposition attempts and the total number of
attempts,

8R(t) = 1n

L1t
(18)

where1n is the number of particles adsorbed in the interval of time1t . The jamming
densityρR(∞) is calculated as the limit of the densityρR(t) for t →∞ that corresponds
to a very large simulation, and to avoid this problem we use a procedure to accelerate the
calculation of the jamming state, so with this value of the jamming density we calculate the
kinetics of the process. The results were averaged over a number of 103 samples, depending
on the size of the lattice. The simulations were carried out on the PARIX parallel computer
system with eight nodes.
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3. Analysis of the results

3.1. The kinetics of hot deposition in the continuum

Figure 3 shows plots ofρR(t) against time obtained for different values ofR (0 6 R 6
1000). The results are obtained for any values ofR by Monte Carlo simulations. For small
R, the results should be compared with the corresponding numerical solutions of the rate
equations. As in the discrete case [18], for early times and low coverage (ρR < 0.4) there
is no appreciable difference in the deposition kinetics whenR is varied. Nevertheless, for
ρ > 0.4 a distinct behaviour is observed for different choices of the parameterR: for a fixed
time, the greater isR the higher isρ. A qualitative understanding of this behaviour can be
explained as follows: as the parameterR increases a given adsorbed particle can hit, during
the flight, another adparticle or clusters of adsorbed particles with higher probability than
in the case of smallR; therefore, the number of empty gaps with lengthl < 1 diminishes
and the coverage increases. To reinforce this explanation, figure 4 shows plots of8R(ρ)

against densityρ for different values ofR. From the figure it is evident that the probability
that an incoming particle hits a free area on the line increases with the parameterR, at
fixed coverageρ; the lower curve corresponds toR = 0 which is the classical car parking
problem. In the opposite limit, for very large values of the parameterR (R → ∞), the
probability8R(ρ) approaches the limiting case8R(ρ) = (1− ρ). Inserting this expression
for 8R(ρ) in equation (13) and solving, we obtain

ρ∞(t) = 1− [1− ρ∞(t)|t=0] e−t (19)

whereρ∞(t)|t=0 is the initial density of particles. Formally, the initial density can be taken
to be zero; however, in the limitR = ∞ it is necessary to have at least one previous
adsorbed particle in order that the deposition process takes place, soρ∞(t)|t=0 6= 0 [21].
The asymptotic regime, for very large values ofR, is clearly exponential with a full coverage
as the jamming stateρ∞(∞) = 1. On the other hand, forR = 0, the asymptotic regime
is power-law dependent with(ρ0(∞) − ρ0(t)) ∝ t−1 as was previously demonstrated in
equation (17). Consequently there should be a crossover between both kinetic regimes. In
order to confirm the last assumption, let us define the following function,

0R(t) = ρR(∞)− ρR(t)
ρR(∞) . (20)

Figure 5 shows plots of0R(t) against time. It appears that a clear straightline behaviour on
a semilogarithmic plot figure 5(a) is obtained for large values ofR and for times smaller
than the crossover timet < τR. In the limitR = ∞, the crossover time also takes the value
τR = ∞ and the kinetics become exponential. In figure 5(b),0R(t) estimates are plotted
on a double logarithmic scale, and it is clear that the data for values ofR < 10 present a
power-law dependence, while for large values ofR the early time regime breaks off such a
dependence at timet ≈ τR, recovering the asymptotic power-law dependence att > τR. To
calculate the crossover timeτR, each curve in figure 5(b) is fitted in the power-law region,
and from the intersection of the fitting line with the curve corresponding toR = ∞ one
can obtainτR. Figure 6 shows the semilogarithmic plot of the crossover timeτR against
R for large values ofR. The data can be reasonably fitted byτR = a + b log10R with
a = 0.579± 0.001 andb = 2.361± 0.002. A qualitative explanation of this interesting
crossover between both asymptotic regimes is also based on the fact that the number of
empty gaps with lengthl < 1 disminishes and the coverage increases as the parameterR

increases. In this way, the incoming particles are adsorbed without empty gaps between
them, so each place on the line is covered by the particles as in the discrete adsorption
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Figure 3. The time dependence of the densityρR(t) and different values of the parameterR.
Starting from the topmost data,R = 1000, 100, 10, 1, 0. Numerical solutions and Monte Carlo
simulations coincide for small values ofR (R = 0, 1).

Figure 4. The probability8R(ρ) againstρ plotted for different values ofR. Starting from the
topmost data,R = 1000, 100, 10, 5, 1, 0.

process. It is interesting to emphasize that, in our study, the crossover from power-law to
exponential kinetics is a novel situation which is inherent to the ‘hot’ deposition mechanism
in the continuum.

3.2. The jamming state

One interesting aspect of ‘hot’ transient mobility is theR-dependence of the jamming density
in the continuum, as well as in the discrete deposition process. In the discrete process, the
dependence of the jamming coverage withR, for hot dimer adsorption, is given by a power
law |θ∞(∞) − θR(∞)| ∝ R−x , where the exponent isx ≈ 0.9 with θ∞(∞) = 1 in one
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Figure 5. (a) A semilogarithmic plot of the time dependence of0R(t) for different values
of the parameterR. Starting from the top-most data,R = 1, 10, 50, 100, 250, 500, 1000,
2000 and 5000. (b) As in (a) but plotted on a double logarithmic scale. The crossover times are
calculated from figure 4 by fitting the power-law region and intersecting the curve corresponding
to R = 5000 (R ≈ ∞).

dimension andx ≈ 0.5 with θ∞(∞) = 0.943 in a two-dimensional square lattice [18, 19].
In contrast with the simple power-law dependence, the jamming density for hot dimer
deposition in the continuum goes asρR(∞) ∝ R/(R+ 1) for large values ofR, presenting
finite discontinuities ofρR(∞) near the integer values of the flight distanceR [24].

To analyse theR-dependence of ‘hot’ monomer deposition, we show in figure 7 a plot
of ρR(∞) againstR/(R + 1). One can observe that the jamming density approaches to
ρR(∞) ∝ 1

2R/(R + 1) for large values ofR. The limit values of the jamming density,
as a function ofR, are according to the previous analysis. In fact forR = 0, we have
the classical car parking model, where the jamming density isρ0(∞) = 0.747 59 [9] and
for R → ∞ the jamming density tends to 1 [20, 21]. Note that the analytical results are
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Figure 6. The crossover timeτR as a function ofR.

Figure 7. The jamming densityρR(∞) plotted againstR/(R+1). Numerical solutions (dashed
line) are compared with Monte Carlo simulations (symbols) for small values ofR. In the inset
we show the derivative of the jamming density dρR(∞)/dR plotted againstR. We can observe
the finite discontinuities for integer values ofR.

in perfect agreement with the simulations; however, forR > 4 the time required for the
numerical solution of the rate equations is larger than that for the simulation.
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One of the main features of the curve in figure 7 is the behaviour of the first derivative
of the jamming density dρR(∞)/dR as a function of the parameterR, which presents finite
discontinuities in the neighbourhood of integer values ofR (see the inset in figure 7), and
which are due to the discontinuities of the GDF atl = R − int(R). To probe this, let us
consider the following argument: the gap distribution function isGR(l,∞) 6= 0 only for
those values ofl ∈ (0, 1); therefore, the expression for the jamming densityρR(∞) can be
written as

ρR(∞) = 1−
∫ 1

0
lGR(l,∞) dl. (21)

Figure 8 shows a plot ofGR(l,∞) as a function ofl for two different values of the
parameterR; the gap distribution functions coincide in all ranges ofl except for those values
betweenR 6 l 6 R′. Then it follows from figure 8 that the differenceGR′ − GR ≈ 0
except forR 6 l 6 R′; therefore, by using equation (14) we get

ρR(∞)− ρR′(∞) = −
∫ R′

R

l[GR′(l,∞)−GR(l,∞)] dl. (22)

Figure 8. A plot of GR(l,∞) againstl for two different values of the parameterR.

If we takeR′ = R + dR the last expression can be approximated by

ρR(∞)− ρR′(∞) ≈ R(GR+dR(l,∞)−GR(l,∞)) dR (23)

and taking dR→ 0 we obtain

dρR(∞)
dR

= −f (R)1GR (24)

wheref (R) is defined as

f (R) =
{
R if R < 1

R − int(R) if R > 1.
(25)

The value of the derivative, equation (24), will be different, approaching a given integer
value of R from the right or left according to equation (25). Hence the origin of the
discontinuities is proved.
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4. Conclusions

In this paper, we have presented a model for the deposition of hot monomers in the
continuum. By means of Monte Carlo simulations and analytical approaches we have
studied so-called ‘hot’ monomer adsorption in the continuum for finite flight distancesR.
We have developed the kinetic rate equations for the gap distribution functions and calculated
the density as a function of time. The numerical solutions of the rate equations are in good
agreement with the Monte Carlo simulation results; however, forR > 4 we observe that
the computational time for the numerical integration of the rate equation is larger than the
time required for the Monte Carlo simulation.

As novel feature, a crossover between the power-law asymptotic approach as a function
of time (ρR(∞) − ρR(t)) ∝ t−1 for the density at smallR and the exponential behaviour
of the asymptotic regime of the density for very largeR is obtained. This effect which
is inherent to the ‘hot’ transient mobility can be explained by the fact that the number of
empty gaps with lengthl < 1 diminishes and the coverage increases as the parameterR

increases. The jamming density is a piecewise continuous function ofR, but dρR(∞)/dR
has finite discontinuities at integer values ofR. On the other hand, for large values ofR
the jamming density is given by a simple law,ρR(∞) ∝ 1

2R/(R + 1).
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Appendix

A.1 Rate equations forR > 1
In the case ofR > 1, examination of the time evolution of the gaps also leads to a set of
closed equations for the GDF; however, the number of rate equations grows linearly withR,
so therefore there is a critical value ofR where the computational time required to solve the
rate equations increases to more than the time corresponding to the Monte Carlo simulation;
in our numerical experience such a critical value isR ≈ 4. Nevertheless, it is interesting to
present here the derivation of the rate equations which govern the kinetics of the process.
Thus, for a given interval of lengthl > R, the gap distribution function evolves according
to:

for R < l,

∂G0
R(l, t)

∂t
= −(l − 1)G0

R(l, t)+ RG0
R(l + 1, t)+

∫ l+R+1

l+1
G0
R(l
′, t)dl′

+2
∫ ∞
l+R+1

G0
R(l
′, t)dl′. (A.1)

In the latter equation the terms on the right-hand side are equivalent to those in equation (3).
Now, for gaps with length between(R−i) < l < (R−(i−1)), with i = 1, 2, 3, . . . , (m−1)
(with m = int(R)), the corresponding rate equation is given by

∂Gi
R(l, t)

∂t
= −(l − 1)Gi

R(l, t)+ lG(i−1)
R (l + 1, t)+

∫ ∞
l+R+1

G0
R(l
′, t)dl′ (A.2)

where the first term on the right-hand side is due to the destruction of the gap with length
l by deposition of a particle in thel − 1 possible place. The second term describes the
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creation of such gaps from those with lengthl′ = l+1 by deposition of one monomer in thel
possible inner places. The last term is the contribution of the gaps with lengthl′ > l+R+1.
Next, we consider the evolution of the gaps with length between 1< l < (R − m + 1),
which is described by

∂Gm
R(l, t)

∂t
= −(l − 1)Gm

R(l, t)+ lG(m−1)
R (l + 1, t)+

∫ ∞
l+R+1

G0
R(l
′, t)dl′ (A.3)

where the description of the terms on the right-hand side are equivalent to those in
equation (A.2). Now, we consider the evolution of these gaps which cannot be destroyed
in the process; the length of such gaps are alwaysl < 1. One has to distinguish two case:
for (R −m) < l < 1 we have

∂Gm+1
R (l, t)

∂t
= lGm−1

R (l + 1, t)+
∫ ∞
l+R+1

G0
R(l
′, t)dl′ (A.4)

and finally, for 0< l < (R −m), the rate equation is

∂Gm+2
R (l, t)

∂t
= lGm

R(l + 1, t)+
∫ ∞
l+R+1

G0
R(l
′, t)dl′. (A.5)

The rate equations may be solved by inserting the ansatz of equation (6) into (A.1).
The functionH(t) obtained by this procedure is the same as given in equation (9). Now,
let us define the following function,

χ(R, l, t) =
∫ ∞
l+R+1

G0
R(l
′, t)dl′ = tH(t) e−(l+R)t . (A.6)

By using the functionχ , the set of equations (A.2) and (A.3) can be rewritten iteratively as

∂Gn
R(l, t)

∂t
+ (l − 1)Gn

R(l, t) = lGn−1
R (l + 1, t)+ χ(R, l, t) (A.7)

wheren = 1, . . . , m, the solution of which gives

Gn
R(l, t) = e−(l−1)t

∫ t

0
e(l−1)t [lGn−1

R (l + 1, t)+ χ(R, l, t)] dt. (A.8)

The densityρR(t) can be evaluated inserting the expression forG
j

R(l, t), with j =
0, . . . , m+ 2, in equation (2) resulting in

ρR(t) = 1−
∫ (R−m)

0
lGm+2

R (l, t)dl −
∫ 1

(R−m)
lGm+1

R (l, t)dl

−
∫ (R−(m−1))

1
lGm

R(l, t)dl − · · · −
∫ ∞
R

lG0
R(l, t)dl. (A.9)

Finally, the jamming density can be obtained by taking the limitt →∞ in the last equation,
which gives

ρR(∞) = 1−
∫ R−m

0
lGm+2

R (l′,∞) dl′ −
∫ 1

R−m
lGm+1

R (l′,∞) dl′. (A.10)
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