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Abstract. We study the kinetics and the jamming state in the continuum deposition of
molecules which present transient mobility, it molecules. The transient mobility is caused

by the inability to dissipate the energy gained by the particle after formation of the surface bond
instantaneously. Accordingly, the particle flies up to a distaRdeefore being immobile. We
analyse the continuum deposition loét monomers in one dimension. The rate equations for
the gap distribution functions are written and solved by means of numerical procedures and
the results are compared with Monte Carlo simulations. The kinetics of the process show a
crossover between power-law and exponential asymptotic regimes for increasing valRes of
The jamming state presents a jamming dengify(co), which is strongly dependent on the
parameterR.

1. Introduction

Models of irreversible monolayer deposition (or adsorption) of particles on solid surfaces
have been investigated extensively [1-9]. In many experiments on the adhesion of colloidal
particles and proteins on solid substrates the relaxation time scales are much longer than the
times for the formation of the deposit. Well known examples of irreversible monolayer
deposition models are ‘random sequential adsorption’ (RSA) [1] and the ‘car parking
problem’ [1,9]. In these models, rigid particles are placed at random, sequentially and
irreversibly onto solid smooth surfaces in such a way that the particles do not overlap. If an
incoming particle approaches part of the substrate which is already covered, it is rejected.
Eventually no more particles fit on the surface and the process stops in the sgaralheitig

(or saturation) limit. The quantity of interest is the fraction of total afga), covered in

time ¢ by the depositing particles or objects. Due to the blocking of the area by the already
randomly adsorbed particles, the limiting or ‘jamming coveraggoo), is less than that
corresponding to close packing. The emergence of this jammed state is influenced by
infinite memory effects. Consequently, its formation cannot be described by mean-field
theory, except for very early times, whéno ¢t. The analysis of such models includes
theoretical studies and computer simulations. Experimental results, as for example the
adhesion of latex spheres on a silica surface [10], support the models as possible theoretical
tools to treat the irreversible adsorption. The analytical treatment includes exact solutions
[3,9], which are mostly in one dimension, series expansion, shielding and truncation [1],
etc, while Monte Carlo simulations have been used extensively in the analysis of the RSA
problem [1].

1 To whom all correspondence should be addressed.
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On the other hand, the analysis of the transient mobility on the irreversible deposition
is interesting. One possible mechanism which involves transient mobility is diffusional
relaxation. The molecules, after adsorption on surface sites, jump by thermal activation
to a more favourable energy location, i.e. stronger adsorption sites, where they remain
irreversibly adsorbed. The effect of diffusional relaxation on RSA processes has been
introduced and discussed by Privman and Nielaba [11] in the RSA of dimers in a one-
dimensional (1D) lattice, where as a main feature, full coverage is reached. The analysis is
also extended to 1B-mer deposition [12], adsorption of particles on a two-dimensional (2D)
square lattice [13] and dimer deposition on different fractal structures [14]. More recently,
the effect of diffusional relaxation was introduced by Maginal [15] in the irreversible
deposition of small latex particles, to explain the inconsistency between the behaviour of
the radial distribution function and the variance of the density of adsorbed particles.

Another well studied relaxation mechanism is so-called ‘hot adsorption’. Experimen-
tally, scanning tunnelling microscopy (STM) observations [16] of the adsorption, @O
Al(111) have shown that, under certain conditions, oxygen molecules striking the metal
surface not only dissociate instantaneously upon adsorption, but dissipate part of their ex-
cess energy in degrees of freedom parallel to the surface. As a consequence, the resulting
monomers fly apart up to a distanéebefore being immobily adsorbed. The experiment
has shown that at a temperatufe= 300 K, the travelling distanc® is, on average, ap-
proximately 40A for each monomer. ‘Hot’ adsorption has also been observed by Weiss and
Eigler [17]. They have reported that Xe atoms travel several hundreds of angstroms across
the Pd(111) surface, kept at 4 K, before adsorption. We can conclude that the inability to
dissipate the energy gained by a particle after formation of the surface bond instantaneously
results in transient mobility relaxation.

This interesting process has been described in the framework of the random sequential
adsorption model. Monte Carlo simulations have been performed to analyse 1D and 2D hot
dimer adsorption [18, 19]; the results show that both the kinetics and the saturation state
are strongly dependent add. On the other hand, an analytical treatment of this process has
only been performed in one dimension [20, 21]. Numerical simulation has shown that the
hot dimer mechanism considerably enhances the rate of g@luction in the catalysed
oxidation of carbon monoxide [22]. The influence of such an adsorption mechanism has
also been used to analyse the critical behaviour in the monomer—dimer irreversible phase
transition [23]. The authors have found that the critical threshold of the second-order
irreversible phase transition (IPT) and also the location of the first order IPT depend on
R. However, the evaluated critical exponents indicate that the universality class of the
transition remains unchanged.

The analysis of ‘hot’ relaxation is also extended to continuum deposition. Recently, ‘hot’
dimer adsorption in the continuum has been analysed by means of numerical simulations
and analytical approaches for finite flight distankg24]. The jamming state, as in the
discrete state, depends on the param@&tehowever, one of the most interesting features
which differentiates the continuum deposition from RSA of the hot dimer in the lattice is the
piecewise profile which characterizes the jamming density as a function of the flight distance
R. The structure observed in the profile presents finite discontinuities in the neighbourhood
of the integer values oR, which is explained by the fact that the probability to cover the
gaps of length R is extrictly zero, and the number of gaps of sizR (with »n integer) are
relatively high.

Based on the results observed in the hot dimer continuum deposition, we are interested
in extending the study of the ‘hot’ relaxation mechanism to the continuum deposition of
molecules (monomers) in one dimension.
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The paper is organized as follows. First, we describe in section 2 the model of monomer
adsorption in one dimension, in particular we develop and solve the kinetics rate equations
for R < o; the generalization of the treatment to any valuea$ given in the appendix.

The simulation scheme is also presented in this section. The results for both the kinetics
and the jamming state are given and discussed in section 3. Finally, in section 4 we present
our conclusions.

2. The model

Let our model consider the deposition of hot monomers in a one-dimensional infinite lattice.
The area covered by the monomer is taken to be equal fthe monomers arrive randomly

at the line at a ratev (per unit time per unit length). If an incoming monomer is blocked

by an adsorbed adparticle, it is removed; otherwise the deposition is successful. After
deposition in a free area, the monomers fly apart up to a certain disfarfceterms of

o units) as in the discrete version of the hot deposition process. If during the flight one
monomer hits another adparticle or a cluster of adparticles which are already at rest on the
surface, the flying monomer is frozen in the collision point (see figure 1). Note that the
concept of jumps has also been introduced in previous RSA studies. In fact, Pagonabarraga
et al [25] have considered a model where particles arrive at the line forming an angle
with the normal; the authors argue that the fixed valuesxfare induced by the presence

of a driving external field. However, the similarity between both models is restricted to the
fact that, in both cases, particles move instantaneously from the original landing point to
the definitive deposition or adsorption place.

Figure 1. lllustration of the deposition process. (a) The incoming monomer A of size 1 arrives
at the line and its centre is deposited in1) possible places. The monomer B is blocked by

a previous adsorbed particle, therefore the adsorption process is aborted. (b) After deposition,
the monomer flies apart up to a distankefrom the deposition place (monomer) before

being made immobile. If during the flight the particle hits another adparticle or cluster of
adparticles which are already at rest on the line, the flying monomer is frozen in the collision
point (monomer C) and the flying distanceR$ < R.
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The kinetics of the hot monomer adsorption process are monitored following the time
evolution of Gg(I, 7) dI, which represents the number density of gaps with length between
[ and/ + dI at time7, for a given value ofR. The number density of gaps per unit length
is given by

nR(t)Z/oo Gr(l,n)dl (1)
0

where, for convenience, we have introduced the dimensionless variasleavt, [ = [ /o
andGy = o Gg. In the following, we consides = 1 without loosing generality.

The densitypg(¢) is also related to the fraction of uncovered surface, i.e. the fraction
of the line uncovered by the adsorbed particles,

pr(t) =1— /wzck(z, fdi. @)
0

Due to the nature of the deposition process, that is, one monomer can hit another
adparticle or cluster of adparticles leading to cluster formation, each gap does not correspond
necessarily to one particle, so we then hawér) # ng(t).

According to the definition of the model, the kinetics of the process are given by the
time evolution ofGr(l, r). To illustrate the method, we present in the following subsection
the derivation of the rate equations and their solution for the ®&asel. In the appendix,
we present the derivation of the caBe> 1.

2.1. Rate equations faR < 1

The rate equations for the gap distribution function (GDF) can be written in a closed form by
considering all the ways in which intervals may be created or destroyed during the process.
Let us now write the set of equations that describe the kinetics evolution of the GDF for
R < 1:

forR<1<lI
8Go l7t [+R+1
9G4 _ —( - 1G%(, 1)+ RGY(1+1,1) +/ G, rydl
ot o I+1
+2 f G, rydl’ ()
[+R+1
forR <1 <1,
AGL(, 1 I+R+1 *
9GR.1 _ RGY%( +1,1) +/ G, rydl’ +2/ G, rydl’ (4)
ot I+1 I+R+1
and finally, for O< [/ < R,
G (l, t ®©
9GRE. 1 =1G%(+1,1) +/ G, ndl'. (5)
ot I+R+1

In equation (5) the gaps can be created from those with leligth/ + 1 by deposition
of one monomer in thé possible inner places. Creation of such gaps also takes place by
deposition of the centre of a monomer at distah¢eR 4+ 1/2 from one extreme of a given
gap; in this case the minimum possible length for such gaps will be/ + R + 1, and
the integration takes into account the contribution of those gaps with léhgth+ R + 1.
Note that gaps with length between<0l < R cannot be destroyed becauBe< 1.

The analysis of the first terms in equation (4) is similar to the first terms of equation (5)
but the possible deposition locations for a given monomerraiestead of/. The second
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term in equation (4) represents the increment in the number of gaps with length between
R <1 < 1 by destruction of gaps with lengths-1 < !’ <14+ R+ 1. As is described above,

the event takes place by deposition of a given monomer whose centre falls at a distance of
[ — R +1/2 from one of the extremes of the gap. The next term is due to the contribution
of the gaps with lengtli’ > [ + R + 1; the factor of two is due to the fact that the centre

of a given monomer can be deposited in two possible places locatet Rt+ 1/2.

Finally, in equation (3) we describe the time evolution of the distribution function of
gap with lengthl > 1 > R. The first term of equation (3) takes into account the destruction
of the gap by deposition of a given monomer in-(1) possible inner places. The second,
third and fourth terms in equation (3) are equivalent to those of (4).

To solve the set of integrodifferential equations, we have used a standard procedure
[1-3]. Let us consider equation (3), which describes the evolution of gaps with length
[ > 1. Inserting the following ansatz,

G%(l, 1) = H@)r?e -V (6)
in equation (3) gives

dl;t(t) =H(t) [R e’ + %(e*’ er 41— 2)} (7)
the solution of which is

H(t) = efd=e" exp[/ot(e“”l)“ +e — 2)(1—"}. (8)

Introducing the exponential-integral function
® du
Ei(t) = er—

t u
the functionH (r) can be rewritten as
e @r—R)
(R + D)r?

wherey = 0.57724... is the Euler constant. Onag%(/, ¢) is known, equations (4) and
(5) can be easily solved to obtain the following expressiondail, 1) and G (I, t):

H(@) = —[Ef(R+D)+E1()+Re™] 9)

t
Gh(l,t) = / H(t e (Rt + e ® + 1) dr’ (10)
0
and
t
G2(,1) = / H( e ('l + e Ry dr' (11)
0

In figure 2 we have shown the behaviour of the gap distribution funct@hé, 1),
G}e(l, t) and G%(l, t) as a function of, for fixed value ofR and with timer as a parameter.
The mean feature of thedependence of the GDF is the finite discontinuity which appears
in [ = R at any timer, which is due to the creation of gaps with lengtk R taking place
by deposition of a given monomer, the centre of which falls at a distante bHf2+ R from
one of the extremes of the interval, while for the gaps with lemgjtk / < 1 the possible
deposition places are located at a distahgel/2 + R; therefore, in the neighbourhood of
[ = R the number of gaps with length> R is bigger than those with length< R. At
the end of the process & oo), another discontinuity appears lat= 1 because there are
no intervals larger than 1G%(l, co) = 0 for I > 1). One important consequence of the
‘hot’ adsorption mechanism is that the gap distribution functi#i(/, oo) does not present
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Figure 2. The gap distribution function (GDF§ (I, ¢) as a function of/, with time ¢ as
a parameter and for fixed values of the flying distaite= 0.5. We can observe the finite
discontinuity at/ = R for any value of time, and dt= 1 for r = co.

logarithmic divergence at contact due to the fact that the particles can hit each other. At the
limit R = 0 corresponding to classical RS&2 (I, oo) = 0 by definition (see equation (11))
and G(l, oo) o< —In(l) for I — 0 as we expect [26-28].

Is interesting to note that the last arguments are also vali® fer1; however, in these
cases the first discontinuity will be locatedlat R — int(R) (where the function iriR)
means the integer part &), that is, because gaps with lendtk: R are filled by particles
which hit one of the extremes of the interval,rat co the length of the resulting gap will
bel = R — int(R).

From the gap distribution function, it is possible to obtain the densit§t) by using
equation (2) as

R 1 o0
,oR(t)zl—f zci(l,t)dl—/ IG5, 1) dl—/ 1G%(, 1) di. (12)
0 R 1

An alternative route which allows the analysis of the short-time and asymptotic
behaviour of the process is by using the kinetic equation satisfied by the denrsity
which can be written as

dor(t)
e Or(1) (13)

where ®(z), the probability of adding one more particle, is equal to the fraction of the
line available for particle deposition. Since, for a given gap of lerigthl, the available
length for inserting a new particle is equal to{ 1), the function®(z) is equal to

Dr(r) = /00(1 —1DG%(, ) dl. (14)
1

Inserting equation (6) in (14) and using equation (13) leads to the following expression for
the density:
e @—-R i

(R+1D Jo

pR(t)=/0 H(u)du =

e_[El((R+1)M)+E1(u)+R e—u]d_l,zl (15)
u
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which is equivalent to equation (12). The jamming density(co), can be calculated by
taking the limit forr — oo in the latter equation, which thus gives

—(2y—R

& % mrebo B rRe B (16)

PRI ="+ Jo 2

Now, we can easily evaluate the short-time behaviour which is givenglos) = r + O(?),
while close to the jamming limipz (+) approaches its saturation value following an algebraic
law, which gives
e@-n
00) — pr(t) =~ . 17

Pr(00) — pr(t) R+ D (7)
The asymptotic behaviour gz (¢) is thus similar to that of a conventional RSA. Note
also that, forR = 0, the functionH (r) in equation (9) as well as the density given by
equation (15) correspond to the well known car parking problem, where the jamming limit
(16) is pr—o(c0) = 0.74759 [1]. Note that the previous analysis is only valid for finite
values ofR.

2.2. Monte Carlo simulation

Here we consider briefly the simulation scheme for the deposition process. The procedure
is almost described in the definition of the model given above. We consider an off-lattice
model where the area covered by the monomer is taken to be equal to 1. The monomers
arrive randomly at the line of sizé& with periodic boundary conditions. Typical lattice
sizes used in our simulations are in the rarge= 10°-1C° depending on the value of
the parameterR, which is in the rangeR = 0 to 5x 10°. In our simulation experiments
no finite-size effect has been observed in the quantities of interest. The corresponding
deposition algorithm is as follows. (i) A real humber betweer: G; < L is selected at
random, the corresponding segmenty) + 1 is considered. If the deposition place defined
by the segment is total or partially occupied the trial ends, i.e. the monomer deposition
cannot take place because the deposition area is blocked by an adsorbed adparticle. (i) The
Monte Carlo (MC) timer is increased to + Az. (iii) After monomer deposition we decide
at random, with equal probability, the flying direction. (iv) If during the flight the monomer
hits another adparticle or ensemble which is already at rest, the flying monomer is frozen
in at the collision point.
The MC time incremenit is defined as AL in such way that the MC unit time & 1),
on average, involves /1 trials. During the deposition process the following quantities are
measured: the densityz () as a function of time and the probabilityd(z), calculated
as the ratio between the number of successful deposition attempts and the total number of
attempts,
An
Dr(t) = Az (18)
where An is the number of particles adsorbed in the interval of titne The jamming
density pr(c0) is calculated as the limit of the densipy(¢) for + — oo that corresponds
to a very large simulation, and to avoid this problem we use a procedure to accelerate the
calculation of the jamming state, so with this value of the jamming density we calculate the
kinetics of the process. The results were averaged over a numbet s&tples, depending
on the size of the lattice. The simulations were carried out on the PARIX parallel computer
system with eight nodes.
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3. Analysis of the results

3.1. The kinetics of hot deposition in the continuum

Figure 3 shows plots opg(t) against time obtained for different values Bf(0 < R <
1000). The results are obtained for any value®dfy Monte Carlo simulations. For small

R, the results should be compared with the corresponding numerical solutions of the rate
equations. As in the discrete case [18], for early times and low covepage 0.4) there

is no appreciable difference in the deposition kinetics wReis varied. Nevertheless, for

p > 0.4 a distinct behaviour is observed for different choices of the pararnRetéar a fixed

time, the greater iR the higher isp. A qualitative understanding of this behaviour can be
explained as follows: as the parameReincreases a given adsorbed particle can hit, during
the flight, another adparticle or clusters of adsorbed particles with higher probability than
in the case of smalR; therefore, the number of empty gaps with length 1 diminishes

and the coverage increases. To reinforce this explanation, figure 4 shows pibig ©f
against density for different values ofR. From the figure it is evident that the probability
that an incoming particle hits a free area on the line increases with the paraRedtr
fixed coveragep; the lower curve corresponds ® = 0 which is the classical car parking
problem. In the opposite limit, for very large values of the param&dR — o0), the
probability @z (p) approaches the limiting caseg (0) = (1 — p). Inserting this expression

for ®g(p) in equation (13) and solving, we obtain

Poo(t) =1 —[1 — po(t)];=0] €' (19)

wherep, (1)|,—0 is the initial density of particles. Formally, the initial density can be taken
to be zero; however, in the limiR = oo it is necessary to have at least one previous
adsorbed particle in order that the deposition process takes plagg, (84,—0 % 0 [21].
The asymptotic regime, for very large valuesifis clearly exponential with a full coverage
as the jamming statg.,(c0) = 1. On the other hand, foR = 0, the asymptotic regime
is power-law dependent withiog(co) — po(1)) o t~1 as was previously demonstrated in
equation (17). Consequently there should be a crossover between both kinetic regimes. In
order to confirm the last assumption, let us define the following function,

o) = PR = Pr() (20)

Pr(00)

Figure 5 shows plots df g (¢) against time. It appears that a clear straightline behaviour on
a semilogarithmic plot figure 5(a) is obtained for large valuekadnd for times smaller
than the crossover time< . In the limit R = oo, the crossover time also takes the value
7z = oo and the kinetics become exponential. In figure 5{by(r) estimates are plotted
on a double logarithmic scale, and it is clear that the data for valués of10 present a
power-law dependence, while for large valueskothe early time regime breaks off such a
dependence at time~ tg, recovering the asymptotic power-law dependence-atrg. To
calculate the crossover timeg, each curve in figure 5(b) is fitted in the power-law region,
and from the intersection of the fitting line with the curve corresponding te co one
can obtaintg. Figure 6 shows the semilogarithmic plot of the crossover tipegainst
R for large values ofR. The data can be reasonably fitted iy = a + blog,q R with
a = 0579+ 0.001 andb = 2.361+ 0.002. A qualitative explanation of this interesting
crossover between both asymptotic regimes is also based on the fact that the number of
empty gaps with lengtth < 1 disminishes and the coverage increases as the parameter
increases. In this way, the incoming particles are adsorbed without empty gaps between
them, so each place on the line is covered by the particles as in the discrete adsorption
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0 2 4 6 8 10

Figure 3. The time dependence of the density(z) and different values of the parameter
Starting from the topmost dat®& = 1000, 100, 10, 1, 0. Numerical solutions and Monte Carlo
simulations coincide for small values & (R = 0, 1).

1.0

OO T T T T T T ¥ T '
00 02 04 06 08 1.0
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Figure 4. The probability®z (p) againstp plotted for different values oR. Starting from the
topmost dataR = 1000, 100, 10, 5, 1, 0.

process. It is interesting to emphasize that, in our study, the crossover from power-law to
exponential kinetics is a novel situation which is inherent to the ‘hot’ deposition mechanism
in the continuum.

3.2. The jamming state

One interesting aspect of ‘hot’ transient mobility is tRedependence of the jamming density

in the continuum, as well as in the discrete deposition process. In the discrete process, the
dependence of the jamming coverage withfor hot dimer adsorption, is given by a power

l[aw |6 (00) — Or(c0)| o« R™*, where the exponent is ~ 0.9 with 6,,(c0) = 1 in one
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Figure 5. (a) A semilogarithmic plot of the time dependenceItf(s) for different values

of the parameteR. Starting from the top-most dat® = 1, 10, 50, 100, 250, 500, 1000,
2000 and 5000. (b) As in (a) but plotted on a double logarithmic scale. The crossover times are
calculated from figure 4 by fitting the power-law region and intersecting the curve corresponding
to R = 5000 R ~ 0).

dimension andr ~ 0.5 with 6,,(co) = 0.943 in a two-dimensional square lattice [18, 19].
In contrast with the simple power-law dependence, the jamming density for hot dimer
deposition in the continuum goes ag(co) o« R/(R + 1) for large values ofR, presenting
finite discontinuities ofog (c0) near the integer values of the flight distarkg24].

To analyse therR-dependence of ‘hot’ monomer deposition, we show in figtira plot
of pr(oco) againstR/(R + 1). One can observe that the jamming density approaches to
Pr(00) %R/(R + 1) for large values ofR. The limit values of the jamming density,
as a function ofR, are according to the previous analysis. In fact for= 0, we have
the classical car parking model, where the jamming densitypisc) = 0.747 59 [9] and
for R — oo the jamming density tends to 1 [20,21]. Note that the analytical results are



Transient mobility in 1D continuum deposition 1175
9
8]

7- a

6 .

5. e

4y

31»

R

101 102 103
R

Figure 6. The crossover timeg as a function ofR.
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Figure 7. The jamming density (co) plotted againsik /(R +1). Numerical solutions (dashed
line) are compared with Monte Carlo simulations (symbols) for small value®. dh the inset
we show the derivative of the jamming densityzdoo)/dR plotted againsik. We can observe
the finite discontinuities for integer values Bf
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in perfect agreement with the simulations; however, for- 4 the time required for the
numerical solution of the rate equations is larger than that for the simulation.
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One of the main features of the curve in figure 7 is the behaviour of the first derivative
of the jamming density gk (c0)/dR as a function of the paramet&; which presents finite
discontinuities in the neighbourhood of integer valuesRofsee the inset in figure 7), and
which are due to the discontinuities of the GDFlat R — int(R). To probe this, let us
consider the following argument: the gap distribution functiorGig(l, co) # 0 only for
those values of € (0, 1); therefore, the expression for the jamming dengityco) can be

written as
1

pR(oo)zl—/ 1G (1, 00) dI. (21)
0

Figure 8 shows a plot o6z (I, c0) as a function ofl for two different values of the
parameteR; the gap distribution functions coincide in all ranges ekcept for those values
betweenR < [ < R’. Then it follows from figure 8 that the differenad&z — Gz ~ 0
except forR <1 < R’; therefore, by using equation (14) we get

”

Pr(0) — prr(00) = — / Gr (U, 00) — Gr(l, o) dl. (22)
R

~ (Gg-Gg)dR

Figure 8. A plot of Gg(l, 00) against/ for two different values of the paramet@&r.

If we take R = R + dR the last expression can be approximated by

PR(00) — pri(00) & R(GRydr(l, 00) — GR(l, 00)) dR (23)
and taking & — 0 we obtain
W) s racs @4)
where f(R) is defined as
) !R if R <1 (25)
R —int(R) if R >1.

The value of the derivative, equation (24), will be different, approaching a given integer
value of R from the right or left according to equation (25). Hence the origin of the
discontinuities is proved.
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4. Conclusions

In this paper, we have presented a model for the deposition of hot monomers in the
continuum. By means of Monte Carlo simulations and analytical approaches we have
studied so-called ‘hot’ monomer adsorption in the continuum for finite flight distaRces
We have developed the kinetic rate equations for the gap distribution functions and calculated
the density as a function of time. The numerical solutions of the rate equations are in good
agreement with the Monte Carlo simulation results; however,Rfos 4 we observe that
the computational time for the numerical integration of the rate equation is larger than the
time required for the Monte Carlo simulation.

As novel feature, a crossover between the power-law asymptotic approach as a function
of time (pgr(00) — pr(t)) o t~* for the density at smalR and the exponential behaviour
of the asymptotic regime of the density for very lar@eis obtained. This effect which
is inherent to the ‘hot’ transient mobility can be explained by the fact that the number of
empty gaps with lengthh < 1 diminishes and the coverage increases as the parameter
increases. The jamming density is a piecewise continuous functi@) bfit dog (c0)/dR
has finite discontinuities at integer values ®f On the other hand, for large values Bf
the jamming density is given by a simple lapg (c0) %R/(R +1).
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Appendix

A.1l Rate equations foR > 1

In the case ofR > 1, examination of the time evolution of the gaps also leads to a set of
closed equations for the GDF; however, the number of rate equations grows linearlg,with

so therefore there is a critical value Bfwhere the computational time required to solve the
rate equations increases to more than the time corresponding to the Monte Carlo simulation;
in our numerical experience such a critical valueRisz 4. Nevertheless, it is interesting to
present here the derivation of the rate equations which govern the kinetics of the process.
Thus, for a given interval of length> R, the gap distribution function evolves according

to:

for R <,
aGo l,l‘ [+R+1
3Grt:1) _ —(-1G%(1, 1)+ RG%(I+1,1) +f GS(l', yd!
ot . I+1
+2 / G, ndl'. (A1)
[+R+1

In the latter equation the terms on the right-hand side are equivalent to those in equation (3).
Now, for gaps with length betweeg® —i) </ < (R—(i—1)), withi =1,2,3,..., (m—1)
(with m = int(R)), the corresponding rate equation is given by

aGL (.t . , 00
% = —( - DGLULH+IGI V1 +1,1) +f GO, t)dl’ (A.2)

I+R+1
where the first term on the right-hand side is due to the destruction of the gap with length
[ by deposition of a particle in the— 1 possible place. The second term describes the
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creation of such gaps from those with lendtk= /+1 by deposition of one monomer in the
possible inner places. The last term is the contribution of the gaps with IEngth+ R + 1.
Next, we consider the evolution of the gaps with length between 1< (R — m + 1),
which is described by

aGan(l,[) _ m (m—1) . 0/ /
———— =—(-DGRU,H+IGy U+ 11)+ G, t)ydl (A.3)
ot I+R+1

where the description of the terms on the right-hand side are equivalent to those in
equation (A.2). Now, we consider the evolution of these gaps which cannot be destroyed
in the process; the length of such gaps are alwaysl. One has to distinguish two case:

for (R—m) <1 <1 we have

o0

=I1GR Y+ 1,0+ f G, ryd’ (A.4)
I+R+1

AG"(1, 1)
dt

and finally, for 0< [ < (R — m), the rate equation is

o]

=1G%(+ 1, z)+/ G, . (A.5)
I+R+1

AGMT2(1, 1)
dr

The rate equations may be solved by inserting the ansatz of equation (6) into (A.1).
The functionH (¢) obtained by this procedure is the same as given in equation (9). Now,
let us define the following function,

x(R,1,1) = / G, tydl' = tH(t) e (TR, (A.6)
I+R+1

By using the functiory, the set of equations (A.2) and (A.3) can be rewritten iteratively as

aG(, 1)

 + (I=DGH(1, 1) =IGE A+ 1,0+ x(R,1,1) (A.7)
wheren =1, ..., m, the solution of which gives
t
Gh(l, 1) = e = / e VUG U+ 1, 1) + x(R, 1, 0)]dt. (A.8)
0

The density pg(¢) can be evaluated inserting the expression (fl{;(l,t), with j =
0,...,m+ 2, in equation (2) resulting in

(R—m) 1
pR(t)zl—/ lG';”(l,t)dZ—f IG™ (1, ) dl
0

(R—m)

(R—(m—1)) o0
—/ IGR, tydl — - — / 1GS(, 1) dl. (A.9)
1 R

Finally, the jamming density can be obtained by taking the limit oo in the last equation,
which gives

R—m 1
pr(00) =1— / IG" T2l 0oy dl' — / IGT(1', 00y dl. (A.10)
0

R—m
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